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7.1 — Solving Linear Systems by Graphing {

Learning Target: to solve linear systems by graphing

Toolkit:
- graphing lines
- rewriting equations into y = mx + b form
- substitution

Linear System - Many problems in mathematics are defined with two equations called a system of linear
equations.

Solving a System — to SOLVE a linear system, find the coordinates where the two lines intersect (the point where
the two lines cross). You will have an x and a y value!

Steps for solving systems graphically:

1. Change each equation to a form that is easy to graph ( y=mx+b OR Ax+By=C )
2. Graph each line on the SAME GRID

3. Identify the point of intersection of the two lines.

** The solution of the system is the ordered pair (x, y) of the point of intersection.

4. Check the solution by substituting the ordered pair into each equation of the original system.
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Ex 1) Solve the system graphically and check the solution
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Ex 4) Solve the system by graphing
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7.2 — Solving Linear Systems by Addition (Elimination)

Learning Target: to solve a system of linear equations algebraically, by adding the equations together

Toolkit:
- substitution

- rearranging equations

- coefficient: the cons sTaat ( \ s Jr\mn ﬁmma

f
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Solving a linear system

by graphing is limited by the accuracy of the graph. Also, when the intersection point is

not coordinates that are exact integers, it’s difficult to determine the exact coordinates from the graph.

Solving a Linear System by the Addition Method (also known as the Elimination Method)

1) Write the equations in STANDARD form ( Ax + By = C)
o YouMAY have a negative "Ax" term here
e This step may not be necessary
2) Multiply the terms of one equation, or both equations, by a constant (if necessary) so that the

coefficients of

x or y are different ONLY IN THEIR SIGN

3) ADD the equations to eliminate either x or y, and SOLVE the resulting equation
4) Substitute the value obtained in step 3 into either of the original equations, and solve for the
remaining variable.

5) Write the soluti

6) Check that the

ion to the system as (x,y)
solution satisfies each of the original equations
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Ex 3) Solve by the Addition Method:
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7.3 — Solving Linear Systems by Substitution

Learning Target: To use the substitution of one variable to solve a linear system algebraically

Toolkit:
- Rearranging equations
- Substituting values into equations
- A solution to a linear system is an (x,y)
ordered pair where two lines cross

Another way to solve linear systems algebraically is called Substitution

Solving a _Linear System by the Substitution Method:

1) Solve one equation for one of its variables in terms of the other variable; this becomes equation 3
2) Substitute the equation from step 1 into the other equation, and then SOLVE that equation.
3) Take the value solved for in step 2, and substitute the value into equation 3 to find the other

value
4) Write the solution as an (x, y) ordered pair
5) Check that the solution satisfies both equations
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Ex 3) Solve by Substitution
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7.4A — Problem Solving with Two Variables

Learning Target: to model situations and answer problems using a system of linear equations

Toolkit:
- Sum, greater than is +
Difference, less than is —
Times, product is x
To change a % to a decimal, move decimal two
places to the
Ex. 6.5% =

These word problems involve two unknowns. We need two equations to solve for two unknowns, so it
will be your job to create the system of two equations and solve it!

STEPS for Solving Linear Systems Word Problems:

1) Define your two variables after reading the question over carefully and determining what you are
being asked to solve for.. You may use x and y, but it is also good to practice working with
other variables (such as t for time). Use “let: statements (Ex. Let x be the number of ...)

2) Build your two equations, using both variables in both equations

3) Solve the system, using either the Addition Method or the Substitution Method

4) Write a sentence answer

5) Check your answer to make sure all conditions are satisfied
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Ex 3) For a basketball game, 1600 total tickets were sold. “Adult tickets cost $3,

and student tickets cost $2. If the total money brought in by ticket sales was

$4000, how many of each kind of ticket were sold'?
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7.4B - Problem Solving with Two Variables

Learning Target: More practice with modeling situations and answering problems using a system of

linear equations

Toolkit:
Speed =

distance

time

OR

These word problems involve two unknowns. We need two equations to solve for two unknowns, so it will be

your job to create the system of two equations and solve it!

STEPS for Solving Linear Systems Word Problems:
1) Define your two variables after reading the question over carefully and determining what you are being

asked to solve for..

You may use x and y, but it is also good to practice working with other variables

(such as t for time). Use “let: statements (Ex. Let x be the number of ...)

2)
3)
4)
3)

Write a sentence

Build your two equations, using both variables in both equations
Solve the system, using either the Addition Method or the Substitution Method

answer

Check your answer to make sure all conditions are satisfied
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Ex 2) Adult tickets for the sc%.ool play are $12, and children’s tickets are $8. Ifa
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Ex 3) A small airplane makes a 2400km trip in 7.5 hours, and makes the return

trip in 6 hours. If the plane travels at a constant speed, and the wind blows at a

constant rate, find the airplane’s airspeed, and the speed of the wind.

*  Whenever you are doing a word problem with speed, distance, and time, it
helps to set up a table like the one below:
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