## **Equilibrium Multiple Choice Provincial Exam Practice**

Reacting systems naturally tend toward what changes in enthalpy and entropy?

|      | Change in Enthalpy | Change in Entropy |
|------|--------------------|-------------------|
| A. [ | decreasing         | increasing        |
| В.   | decreasing         | decreasing        |
| : [  | increasing         | increasing        |
| ). T | increasing         | decreasing        |

A. 1

1.

B. 2

C. 3

D. 4

3. Consider the following:

$$energy + NH_4SH(s) \ \stackrel{?}{\rightleftarrows} \ NH_3(g) + H_2S(g)$$

Which of the following describes how enthalpy and entropy change in the forward direction?

|      | Enthalpy   | Entropy    |
|------|------------|------------|
| ١, [ | increasing | increasing |
| . [  | increasing | decreasing |
| . [  | decreasing | decreasing |
|      | decreasing | increasing |

A. 1

B. 2

C. 3

D. 4

Which of the following forward reactions demonstrates decreasing enthalpy and

A. 
$$Hg(\ell) + \frac{1}{2}O_2(g) \stackrel{?}{\rightleftharpoons} HgO(s)$$
  $\Delta H = -91 \text{ kJ}$ 

$$B. \quad 2HCl(g) \quad \stackrel{?}{\rightleftharpoons} \quad H_2(g) + Cl_2(g) \qquad \Delta H = +185 \, kJ$$

C. 
$$2HgO(s) \stackrel{?}{\rightleftharpoons} 2Hg(\ell) + O_2(g)$$
  $\Delta H = +182 \text{ kJ}$ 

$$^{\circ} 2SO_3(g) \stackrel{?}{\rightleftharpoons} 2SO_2(g) + O_2(g) \qquad \Delta H = -200 \text{ kJ}$$

. 2

C. 3

D. 4

2.

Consider the following equation:

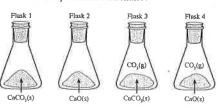
$$2C(s) + 2H_2(g) + energy \stackrel{?}{\rightleftharpoons} C_2H_4(g)$$

Which of the following occurs when C and H, are combined?

|    | Enthalpy Change | Entropy Change | Result            |
|----|-----------------|----------------|-------------------|
| ۸. | increasing      | decreasing     | no reaction       |
| 3. | increasing      | decreasing     | reacts completely |
|    | Increasing      | increasing     | equilibrium       |
| ). | decreasing      | decreasing     | no reaction       |

A. 1

B. 2


C. 3

D. 4

Consider the following equilibrium:

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

In which of the flasks will this equilibrium be established?



A. 1, 2, 3 only B. 1, 2, 4 only C. 1, 3, 4 only

D. 3, 4 only

A. 1

B. 2

C. 3

D. 4

6.

$$NH_4Cl(s)$$
  $\rightleftharpoons$   $NH_3(g) + HCl(g)$   $\Delta H = +176 kJ$ 

Which of the following would cause a shift to the right?

- A. adding NH<sub>4</sub>Cl
- B. removing NH<sub>3</sub>
- C. increasing pressure
- D. decreasing temperature
- A. 1
- B. 2
- C. 3
- D. 4

9.

$$4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(\ell)$$
  $\Delta H = -1530 \text{ kJ}$ 

Which of the following would cause the amount of  $\mathrm{NH}_3$  at equilibrium to increase?

- A. an increase in [O<sub>2</sub>]
- B. a decrease in volume
- C. a decrease in temperature
- D. an increase in temperature
- A. 1
- B. 2
- C. 3
- D. 4

7.  $NH_4CI(s) \rightleftharpoons NH_3(g) + HCI(g) \qquad \Delta H = +176 kJ$ 

When HCl is added, how do the concentrations of  $NH_3$  and HCl at the new equilibrium compared to the original equilibrium concentrations?

|    | [NH <sub>2</sub> ] | [HCI]  |
|----|--------------------|--------|
| Α. | higher             | higher |
| В. | higher             | lower  |
| c. | lower              | higher |
| D. | lower              | lower  |

- A. 1
- B. 2
- C. 3
- D. 4 8.

| NH <sub>4</sub> Cl(s) | ightleftarrows | $NH_3(g) + HCl(g)$ | $\Delta H = +176  kJ$ |
|-----------------------|----------------|--------------------|-----------------------|
|                       |                |                    |                       |

Solid  $NH_4Cl$  is added to the preceding equilibrium. What will happen to the forward and reverse rates?

|    | Forward Rate | Reverse Rate |
|----|--------------|--------------|
| A. | increases    | increases    |
| в. | no change    | no change    |
| c. | increases    | decreases    |
| D. | decreases    | increases    |

- A. 1
- B. 2
- C. 3 D. 4

10.

$$4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(\ell)$$
  $\Delta H = -1530 \text{ kJ}$ 

What happens when  $O_2$  is added to the above system?

|    | Equilibrium  | $[N_2]$   |
|----|--------------|-----------|
| A. | no shift     | unchanged |
| В. | shifts right | decreases |
| C. | shifts right | increases |
| D. | shifts left  | increases |

- A. 1
- B. 2
- C. 3
- D. 4

$$4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(\ell) \qquad \Delta H = -1530 \, kJ$$

 $^{\rm rc}$  some  ${\rm O}_2$  is injected into the system, what happens to the forward and reverse reaction rates ring the shift to re-establish equilibrium?

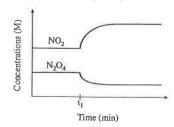
|     | Forward<br>Reaction Rate | Reverse<br>Reaction Rate |
|-----|--------------------------|--------------------------|
| .   | încreases                | decreases                |
| .   | decreases                | decreases                |
| : [ | Increases                | increases                |
| ).  | decreases                | ілстеазез                |

- A. 1
- B. 2 C. 3
- D. 4

13.

Styrene is manufactured as follows:

$$C_6H_5CH_2CH_3(g) + 123kJ \rightleftharpoons C_6H_5CHCH_2(g) + H_2(g)$$


Which of the following describes the temperature and pressure needed for the maximum yield of styrene?

|    | Тетретаците | Pressure |
|----|-------------|----------|
| Α. | low         | low      |
| B. | low         | high     |
| c. | high        | low      |
| D. | high        | high     |

- A. 1
- B. 2
- C. 3
- D. 4

Consider the following diagram for the equilibrium system:

$$N_2O_4(g)$$
 + energy  $\rightleftharpoons$   $2NO_2(g)$ 



Which of the following stresses was applied at time  $t_1$ ?

- A. [NO<sub>2</sub>] was increased.
- B. [N2O4] was decreased.
- Temperature was increased.
  Temperature was decreased. C. D.
- A. 1
- B. 2
- C. 3
- D. 4

Consider the following equilibrium system:

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

An equilibrium mixture of NO(g),  $\rm O_2(g)$  and NO<sub>2</sub>(g) is transferred from a 1.0L container to a 2.0 L container. Which reaction is favoured and what happens to the [NO<sub>2</sub>]?

| Reaction Favoured | [NO <sub>2</sub> ] |
|-------------------|--------------------|
| reverse           | increases          |
| reverse           | decreases          |
| forward           | increases          |
| forward           | decreuses          |

- A. 1
- B. 2
- C. 3
- D. 4

## 15.

Methanol (CH<sub>3</sub>OH) is produced according to the following equilibrium equation:

$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) + energy$$

Which conditions would favour a high yield of methanol?

|    | * Temperature | Pressure |
|----|---------------|----------|
| A. | low           | low      |
| B. | low           | high     |
| C. | high          | low      |
| D. | high          | high     |

A. 1

B. 2

C, 3

D. 4

17. Consider the following equilibrium equation:

$$MgO(s) + SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons MgSO_4(s)$$

Which expression represents the [O<sub>2</sub>] at equilibrium?

A. 
$$[O_2] = \frac{1}{K_{eq}[SO_2]}$$

B. 
$$[O_2] = (K_{eq}[SO_2])^2$$

C. 
$$[O_2] = \left(\frac{1}{K_{eq}[SO_2]}\right)^2$$

D. 
$$[O_2] = \frac{[MgSO_4]}{K_{eq}[MgO][SO_2]}$$

A. 1

B. 2

C. 3

D. 4

16.
Consider the following reactions:

| 1  | $Na_2O(s) \rightleftharpoons 2Na(\ell) + \frac{1}{2}O_2(g)$ | $K_{eq} = 2 \times 10^{-25}$ |
|----|-------------------------------------------------------------|------------------------------|
| 11 | $Na_2O_2(s) \rightleftharpoons 2Na(\ell) + O_2(g)$          | $K_{eq} = 5 \times 10^{-29}$ |
| ш  | $2Na_2O(s) \rightleftharpoons 4Na(\ell) + O_2(g)$           | $K_{eq} = 3 \times 10^{-14}$ |

Which of the following lists the reactions in order, from the greatest  $[O_2]$  at equilibrium, to the least  $[O_2]$  at equilibrium?

A. l, lI, III

B. I, III, II

C. III, I, II D. III, II, I

A. 1

B. 2

C. 3 D. 4

18

Consider the equilibrium expression  $K_{eq1}$  for reaction 1:

$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$

and the equilibrium expression  $K_{eq2}$  for reaction 2:

$$2SO_3(g) \rightleftharpoons O_2(g) + 2SO_2(g)$$

How is  $K_{eq2}$  related to  $K_{eq1}$ ?

A. 
$$K_{eq2} = K_{eq1}$$

B. 
$$K_{eq2} = (K_{eq1})^2$$

$$\text{C.} \quad \mathbf{K}_{eq2} = \left(\frac{1}{\mathbf{K}_{eq1}}\right)$$

D. 
$$K_{eq2} = \left(\frac{1}{K_{eq1}}\right)^2$$

A. 1

B. 2

C. 3

D. 4

$$energy + COBr_2(g) \ \rightleftarrows \ CO(g) + Br_2(g)$$

/hich of the following statements is true?

- A. Decreasing [CO] will increase  $K_{eq}$ .
- B. Increasing [COBr $_2$ ] will increase  $K_{eq}$ .
- C. Increasing the temperature will decrease Kea
- D. Decreasing the temperature will decrease  $K_{eq}$ .
- A. 1
- B. 2
- C. 3
- D. 4

21.

Consider the following equilibrium system:

$$2H_2S(g) \rightleftharpoons 2H_2(g) + S_2(g)$$

At equilibrium, a 2.0L reaction vessel contained  $1.2 \times 10^{-3}$  mol H<sub>2</sub>S,  $7.2\times 10^{-6}~\text{mol}~H_2$  and  $6.0\times 10^{-2}~\text{mol}~S_2.$  What is the value of  $K_{eq}$  ?

- A.  $6.5 \times 10^{-10}$
- B.  $1.1 \times 10^{-6}$
- C.  $2.2 \times 0^{-6}$
- D.  $9.3 \times 10^5$
- A. 1
- B. 2
- C. 3
- D. 4

Due to a change in temperature, a system at equilibrium shifts, causing the concentration of products to change. Which of the following could be correct?

|    | [Products] | Value of K <sub>eq</sub> |
|----|------------|--------------------------|
| I  | increases  | no change                |
| II | Increases  | increases                |
| Ш  | decreases  | decreases                |
| ıν | decreases  | increases                |

- A. I only
- B. II only
- C. I and IV only
  D. II and III only
- A. 1
- B. 2
- C. 3
- D. 4

22. Consider the following equilibrium equation:

$$N_2H_6CO_2(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

Initially,  $0.245 \, \text{mol} \, \, \text{N}_2 \text{H}_6 \text{CO}_2$  is placed in a  $1.0 \, \text{L} \,$  container. At equilibrium,  $[CO_2] = 0.18 \,\mathrm{M}$ . What is the value of  $K_{eq}$ ?

- A.  $5.8 \times 10^{-3}$
- B.  $2.3 \times 10^{-2}$
- C.  $3.2 \times 10^{-2}$
- D.  $6.5 \times 10^{-2}$
- A. 1
- B. 2
- C. 3
- D. 4

Consider the equilibrium:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

Initially, 1.6 mol SO  $_3$  is placed in a 3.0 L container. At equilibrium, [O  $_2$ ] = 0.15 M . What is the value of  $K_{eq}$  ?

- A. 0.26
- B. 1.2
- C. 4.0
- D. 43
- A. 1
- B. 2
- C. 3
- D. 4

25.

Consider the following equilibrium equation:

$$H_2(g) + C_2N_2(g) \rightleftharpoons 2HCN(g)$$
  $K_{eq} = 1.20$ 

Initially, 0.86 mol  $\rm H_2$ , 2.8 mol  $\rm C_2N_2$  and 1.6 mol HCN are placed in a 2.0 L flask. Which of the following is true?

- A. Trial  $K_{eq} > K_{eq}$  so the reaction proceeds to the left.
- B. Trial  $K_{\it eq} < K_{\it eq}$  so the reaction proceeds to the left.
- C. Trial  $K_{eq} < K_{eq}$  so the reaction proceeds to the right.
- D. Trial  $K_{eq} > K_{eq}$  so the reaction proceeds to the right.
- A. 1
- B. 2
- C. 3
- D. 4

24.

Consider the following equilibrium system:

$$2CH_4(g)$$
  $\rightleftharpoons$   $C_2H_2(g) + 3H_2(g)$   $K_{eq} = 2.8$ 

Initially, 0.4 mol of each substance is placed in a 1.0 L container. Which of the followin describes this system as it approaches equilibrium?

|    | $[C_2H_2]$ | Forward Rate |
|----|------------|--------------|
| A. | increases  | decreases    |
| В. | Increases  | Increases    |
| c. | decreases  | decreases    |
| D. | decreases  | increases    |

- **A.** 1
- B. 2
- C. 3
- D. 4