Equilibrium Review

1. Consider the following equilibrium system:

 $2CrO_4{}^{2} \cdot {}_{(aq)} \, + \, 2H^+ \cdot {}_{(aq)} \, \Leftrightarrow \, Cr_2O_7{}^{2} \cdot {}_{(aq)} \, + \, H_2O_{(1)}$

At equilibrium the [CrO42] remains constant even though the forward reaction continues to occur. Explain.

- 2a. Why are chemical equilibria referred to as dynamic?
- b. How is a chemical system at equilibrium recognized?
- 3. State LeChatelier's Principle.
- 4. At equilibrium, the macroscopic properties of a system are constant. Give an example of a macroscopic property and explain why it is constant at equilibrium.
- 5. Consider the following equilibrium system:

 $N_{2(g)} + 3H_{2(g)} \Leftrightarrow 2NH_{3(g)} + energy$

For the forward direction:

- a. Explain if enthalpy is increasing or decreasing and why.
- b. Explain if entropy is maximized or minimized and why.
- 6. Consider the following reaction:

 $N_2O_{4(g)}$ + energy ? \Rightarrow ? $2NO_{2(g)}$

Will this system come to equilibrium? Explain using enthalpy and entropy.

7. Consider the following equilibrium system:

 $CO_{(g)} + 2H_{2(g)} \Leftrightarrow CH_3OH_{(g)} + energy$

Describe how moles of CH₃OH change due to the following changes:

- a. increase in temperature
- b. addition of CO
- c. removal of H₂
- d. increase in pressure
- e. addition of CH₃OH
- f. removal of CH₃OH
- 8. Use graphs and explanations to depict how the forward and reverse rates change due to addition of CO until a new equilibrium is established (use the equilibrium from question 7).

9. Consider the following equilibrium:

$$N_2O_{4(g)} + 59kJ \Leftrightarrow 2NO_{2(g)}$$

The graph below shows the [N₂O₄] and the [NO₂] plotted against time.

- a. Calculate the Keq for the reaction at 5, 15, and 25 seconds.
- Explain the change in conditions imposed on the system at 10s using LeChatelier's Principle. Also, support your explanation using Keq values.
- c. Explain the change in condition imposed on the system at 20s using LeChatelier's Principle. Also, support your explanation using Keq values.
- 10. Consider the following graph for the equilibrium:

$$H_{2(g)} \,+\, I_{2(g)} \,\Leftrightarrow\, 2HI_{(g)} \,+\, 52kJ$$

Identify the imposed changes at time:

11. Consider the following equilibrium suctom:

$$2NO_{(g)} + Cl_{2(g)} \Leftrightarrow 2NOCl_{(g)}$$

In an experiment, 0.90 moles of NO and 0.60 moles of Cl₂ are placed into a 1.0L container and allowed to establish equilibrium. At equilibrium, [NOCl] = 0.56M. Calculate the Keq value.

12. 0.400mol of H₂ and 0.200mol of I₂ were placed in a 2.00L flask and allowed to reach equilibrium according to the reaction

$$H_{2(g)} + I_{2(g)} \Leftrightarrow 2HI_{(g)}$$

At equilibrium [HI] = 0.160 mol/L. Calculate the equilibrium constant.

13. Consider the following equilibrium:

$$2NO_{(g)} + O_{2(g)} \Leftrightarrow 2NO_{2(g)}$$

$$K_{eq} = 6.45 \times 10^5$$

- a) Write the Keq expression.
- b) Explain why the $[NO_2]$ is greater than the [NO] at equilibrium when the $[O_2]$ is 1.0 mol/L.
- 14. Consider the following equilibrium:

$$N_2H_{4(g)} + 2O_{2(g)} \Leftrightarrow 2NO_{(g)} + 2H_2O_{(g)}$$

More oxygen is added to the above equilibrium. After the system reestablishes equilibrium, identify the substance(s) that have a net

- a) increase in concentration
- b) decrease in concentration

Support your answer with an equilibrium graph tracking the concentration change.

15. Consider the following equilibrium:

$$SO_{3(g)} + NO_{(g)} \iff NO_{2(g)} + SO_{2(g)}$$
 $K_{eq} = 0.500$

 0.100mol SO_3 and 0.100 mol NO were placed in a 1.00 L flask and allowed to react. Calculate [SO₂] at equilibrium.

16. Consider the following equilibrium system:

$$N_{2(g)} \, + \, O_{2(g)} \, \Longleftrightarrow \, 2NO_{(g)}$$

$$K_{eq} = 0.0081$$

 $0.200 mol\ of\ N_2$ and $0.200 mol\ of\ O_2$ are placed into a 5.00 L container and allowed to establish equilibrium. Calculate the concentration of each substance at equilibrium.

17. Consider the following equilibrium:

$$2NO_{co} + Br_{2co} \Leftrightarrow 2NOBr_{50}$$

$$K_{\rm cl} = 1.0 \times 10^2$$

An unknown amount of NOBr is placed into a 2.00L container. At equilibrium, the $[Br_2] = 0.0400M$. Calculate the moles of NOBr initially placed in the container.

18. Consider the following equilibrium:

$$2HCl_{(g)} \Leftrightarrow H_{2(g)} + Cl_{2(g)}$$
 $K_{eq} = 0.700$

Initially, unknown amounts of H_2 and Cl_2 were placed in a container. At equilibrium, [HCl] = 0.240M. Find the initial [H₂] and [Cl₂].

19. Consider the equilibrium:

$$CH_{4(g)} + H_2O_{(g)} \Leftrightarrow CO_{(g)} + 3H_{2(g)}$$
 $K_{eq} = 6.58$

A student places 0.360M CH₄, 0.0800M H₂O, 0.320M CO and 0.780M H₂ into a 1.00L container. Show by calculation whether [CH₄] increases, decreases, or stays the same.

20. Consider the following equilibrium:

$$CH_{^{4(g)}} \ + \ H_2O_{(g)} \ \Leftrightarrow \ CO_{(g)} \ + \ 3H_{2(g)}$$

Keq	Temperature
1.78×10^{-3}	800°C
4.68×10^{-2}	1000°C

Is the forward reaction in this equilibrium endothermic or exothermic? Explain your answer.

21. Given the reacting system:

$$H_{2(g)} + I_{2(g)} \iff 2HI_{(g)} \qquad \qquad K_{eq} = 64$$

Equal moles of H₂, I₂, and HI are placed into a 1.00L container. Use calculations to determine the direction the reaction will proceed in order to reach equilibrium.