Kinetics Multiple Choice Provincial Exam Practice

Which of the following could not be units for reaction rate?

- B. g/mL
- C. M/min
- D. °C/hour
- A. 1
- B. 2
- C. 3
- D. 4

3. Consider the reaction:

$$2 \text{Al(s)} + 3 \text{CuCl}_2(\text{aq}) \rightarrow 2 \text{AlCl}_3(\text{aq}) + 3 \text{Cu(s)}$$

What is the rate of Al consumption in mol/min if 0.98 g Cu are produced in 2.5 minutes?

- A. $4.1 \times 10^{-3} \,\text{mol/min}$
- $6.2 \times 10^{-3} \, \text{mol/min}$
- $9.3 \times 10^{-3} \text{ mol/min}$
- D. $3.9 \times 10^{-1} \, \text{mol/min}$
- A. 1
- B. 2
- C. 3
- D. 4 4.

Consider the following reaction:

$$2\mathsf{Al}(\mathsf{s}) + 3\mathsf{CuCl}_2(\mathsf{aq}) \to 3\mathsf{Cu}(\mathsf{s}) + 2\mathsf{AlCl}_3(\mathsf{aq})$$

If 0.56 g Cu is produced in 1.0 minute, what mass of Al is used up in 20.0 seconds?

- A. 0.053 g
- B. 0.12 g
- C. 0.16g
- D. 0.37g
- **B.** 2
- C. 3
- D. 4

Which of the following represents the typical mathematical relationship between reaction rate and time?

C.

D.

- A. 1 B. 2
- C. 3 D. 4

5.

Consider the following reaction:

$$\mathrm{CH_3COOH(aq)} + \mathrm{NaHCO_3(s)} \rightarrow \mathrm{NaCH_3COO(aq)} + \mathrm{CO_2(g)} + \mathrm{H_2O(\ell)}$$

Which of the following properties could best be used to measure the reaction rate?

- A. the volume of CO₂
- B. the volume of H₂O
- C. the mass of CH₃COOH
- D. the surface area of NaHCO3
- A. 1
- В. 2
- C. 3
- D. 4 6.

Which of the following describes what happens to the KE and PE as an activated complex forms products?

	KE	PE
۸.	decreases	increases
	decreases	decreases
	increases	increases
). T	increases	decreases

- A. 1
- B. 2
- C. 3 D. 4

7.

Consider the reaction:

$$\mathsf{ZnS}(s) + \mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) + \tfrac{1}{2}\mathsf{O}_2(\mathsf{g}) \to \mathsf{ZnSO}_4(\mathsf{aq}) + \mathsf{S}(s) + \mathsf{H}_2\mathsf{O}(\ell)$$

What would increase the fraction of successful collisions?

I	increasing temperature
II	increasing surface area of ZnS
Ш	increasing [H ₂ SO ₄]
IV	adding a suitable catalyst

- A. I and II only
 B. I and IV only
 C. II and III only
- D. I, II, III and IV
- A. 1
- B. 2
- C. 3
- D. 4

9.

Which of the following would have a positive value for ΔH ?

1.	the evaporation of water
11.	the burning of a match
ш.	the explosive reaction between H2 and O2
IV.	a chemical cold pack

- A. III only
- B. IV only C. I and IV C.
- D. II and III
- A. 1
- B. 2
- C. 3
- D. 4

8. Consider the following reaction:

$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

In two different experiments, equal moles of Zn and equal volumes of HCl are reacted After 2 minutes, the volume of H₂ produced is recorded as follows:

	Zn	Тетр	[HCI]	Volume H ₂ (mL)
Experiment I	strip	10°C	10.0 M	10.6
Experiment 2	powdered	15℃	3.0 M	7.3

Which of the following factors explains why the rate in Experiment 1 is different than the rate in Experiment 2?

- A. [HCI]
- B. temperature
- C. nature of reactants D. surface area of Zn
- A. 1
- B. 2
- C. 3
- D. 4

10.

Consider the following two reactions occurring under the same conditions:

	I	$C_2H_5Cl(\ell) \rightarrow C_2H_4(g) + HCl(g)$	$E_{n} = 254 \mathrm{kJ}$
N	II	$C_2H_5Br(\ell) \rightarrow C_2H_4(g) + HBr(g)$	$E_a = 219 kJ$

Which of the following is correct?

- A. Reaction I is faster because it has a higher E_a .
- B. Reaction II is faster because it has a lower E_a .
- C. Reaction I is slower because it is exothermic.
- D. Reaction II is slower because it is endothermic.
- A. 1
- B. 2
- C. 3 D. 4

Consider the following PE diagram:

Progress of the reaction

Which of the following is true for the forward reaction?

	ΔΗ	E _a (kJ)
A.	-150	300
В.	-150	600
c.	+150	300
D.	+150	600

A. 1 B. 2 C. 3

D. 4

13. Consider the following PE diagram:

Progress of the reaction

Which of the following is true for the reverse reaction?

	William Street	ΔΗ	E _d
A.	catalyzed	−50 kJ	100 kJ
В.	catalyzed	+50 kJ	150kJ
C.	uncatalyzed	-50 kJ	100 kJ
D.	uncatalyzed	+50 kJ	150 kJ

A. 1 B. 2

C. 3

D. 4

12.

Use the following diagram to answer questions 6 and 7.

Which of the following are the values for the activation energy (E_a) and change in enthalpy (ΔH) for the reverse reaction?

	Ea (kJ)	ΔH (kJ)
А.	300	-50
В.	150	+50
C.	100	-50
D.	100	+50

A. 1 B. 2 C. 3 D. 4

14.

An uncatalyzed reaction has the following values for E_a :

$$E_{a(forward)} = 250 \, kJ$$

$$E_{a \text{(reverse)}} = 100 \, \text{kJ}$$

If a catalyst is added to the reaction, which of the following values could be correct?

	E _{a (forward)} (kJ)	E _{a(reverse)} (kJ)	ΔH _(forward) (kJ)
A.	50	200	-150
B.	50	200	+150
C.	200	50	-150
D.	200	50	+150

A. 1 B. 2 C. 3

D. 4

15.

Consider the following PE diagram for a reversible reaction:

Which of the following correctly corresponds to the diagram above?

	PE of activated complex (kJ)	$E_{a(revense)}(kJ)$	ΔH _(forward) (kJ)
A.	150	200	+50
3.	200	150	-50
Ţ.	450	150	+50
Э.	450	300	+50

A. 1

B. 2

C. 3

D. 4

17.

Consider the following reaction:

$$Br - \begin{matrix} H \\ C \\ H \end{matrix} + OH \rightarrow Br^- + \begin{matrix} H \\ H \\ H \end{matrix} C - OH$$

Which of the following could be true of the activated complex?

	Structure	PE (relative to reactants)
A.	$\begin{bmatrix} H \\ I \\ Br - C - O \\ H \end{bmatrix}^{2-}$	limet
9	H	liwer
c	$\left[\begin{array}{c} H \\ Ir - C - 0 \\ H \end{array}\right]^{2-}$	higher
D.	Вг—С—ОН Н Н	higher

A. 1 B. 2

C. 3

D. 4

16.

Which of the following represents the value for the activation energy of the forward reaction in an equilibrium system?

A. $E_{a(forward)} = E_{a(reverse)} + (\Delta H)$

B. $E_{a(forward)} = E_{a(reverse)} - (\Delta H)$

C. $E_{a(forward)} = (\Delta H) - E_{a(reverse)}$

D. $E_{a(forward)} = -(\Delta H) - E_{a(reverse)}$

A. 1

B. 2

C. 3

D. 4

18.

	Step 1:	$2NO \rightarrow N_2O_2$	(fast)
	Step 2:	$N_2O_2 + H_2 \rightarrow N_2O + H_2O$	(slow)
1	Step 3:	$N_2O + H_2 \rightarrow N_2 + H_2O$	(fast)

Increasing the concentration of which of the following substances would cause the greatest increase in the reaction rate?

A. H₂

B. NO

C. N₂O

 $D_{*} \quad H_{2}O$

A. 1

B. 2

C. 3 D. 4

Step 1:	$2\mathrm{NO} \rightarrow \mathrm{N_2O_2}$	(fast)
Step 2:	$N_2O_2 + H_2 \rightarrow N_2O + H_2O$	(slow)
Step 3:	$N_2O + H_2 \rightarrow N_2 + H_2O$	(fast)

Which of the following are products in the overall reaction?

I	N ₂
II	N ₂ O ₂
Ш	N_2O
IV	H ₂ O

- A. I and II only
- B. I and IV only C. II and III only
- D. III and IV only
- A. 1 B. 2 C. 3 D. 4

21

Step 1	$NO + O_2 \rightarrow OONO$
Step 2	$?$ + OONO \rightarrow 2NO ₂
Overall	$2NO + O_2 \rightarrow 2NO_2$

Which of the following substances could represent an activated complex from the above mechanism?

	Activated Complex
A.	O ₂
B.	NO
C.	NO ₂
D.	N ₂ O ₄

- A. 1 B. 2 C. 3 D. 4

_	١	-	η	ı	

Step J	$NO + O_2 \rightarrow OONO$
Step 2	? + OONO → 2NO ₂
Overall	$2\mathrm{NO} + \mathrm{O_2} \rightarrow 2\mathrm{NO_2}$

What substance is missing in Step 2?

Missing Substance	
O ₂	
NO	
NO ₂	
OONO	

- A. 1 B. 2

- C. 3 D. 4

22.

Consider the following reaction mechanism:

Step 1:	$C_2H_5HgI \rightarrow C_2H_5Hg^+ + I^-$		
Տար 2։	$C_2H_5Hg^+ + Cl^- \rightarrow Particle J$		
Overall	$C_2H_5HgI + CI^- \rightarrow C_2H_5HgCI + I^-$		

Identify Particle 1 and a reaction intermediate from the above mechanism.

	Particle 1	Reaction Intermediate
A.	C ₂ H ₅ Hg ⁺	C₂H₅HgI
В.	C₂H₅HaI	C ₂ H ₅ Hg [†]
C.	C ₂ H ₅ HgCl	I_
D.	C ₂ H ₅ HgC)	C₂H₅Hg⁺

- A. 1 B. 2
- C. 3
- D. 4