Redox Review

- 1. Define oxidation and reduction.
- 2. Explain what a redox reaction is.
- 3. Cu²⁺ reacts spontaneously with Al to produce Cu and Al³⁺. Write the oxidation half reaction, the reduction half reaction, and the net ionic redox reaction. Label the oxidizing agent and reducing agent.
- 4. Using your table, write the half reactions and complete redox reaction when acidified BrO₃ reacts with H₂S gas. Label the oxidizing agent and reducing agent. Is this reaction spontaneous?
- 5. Give the oxidation numbers for each of the following substances: a) MnO₄- b) H₂SO₃ c) Fe₃O₄ d) BaCr₂O₇ e) C₃H₈ f) HClO₄ g) P₄
- 6. Are the following reactions redox? State why or why not.
 - a) $BaCl_2 + Na_2SO_4 \Rightarrow BaSO_4 + 2NaCl$
 - b) $2Na + MgBr_2 \Rightarrow Mg + 2NaBr$
- 7. What metal can be oxidized by acidified MnO₄ but not by acidified BrO₃?
- 8. Which is the stronger reducing agent: H₂O₂ or Ni? How do you know?
- 9. Which substance can be reduced by I but not by Fe2+?
- 10. If the following reactants are mixed, will the reaction be spontaneous, non spontaneous, or will there be no reaction at all? If spontaneous, write a balanced redox equation:
 - a) Cu2+ and Ag2S b) K+ and Sn2+ c) AuCl4 and Al
- 11. Balance the following and calculate the E°_{cell} : $Mn^{2+} + ClO_{4^-} \Rightarrow MnO_{4^-} + Cl^-$ (acidic)
- 12. Balance the following half reaction: H_2BO_3 \Rightarrow BH_4 (basic)

13. Write an oxidation half reaction, reduction half reaction, and overall redox equation for the skeleton redox reaction in basic solution:

Ag⁺ + C₆H₄(OH)₂
$$\Rightarrow$$
 Ag + C₆H₄O₂

14. In an unusual compound, IPO4, iodine exists as iodine (III). The compound decomposes as in the following skeleton redox reaction:

$$IPO_4 \Rightarrow I_2 + IO_3 + PO_4^3$$
 (acidic)
Balance this redox equation.

- 15. In a titration, 28.55mL of acidified 0.0500M KMnO₄ is required to oxidize a 10.00mL sample of Cr³⁺. Write the balanced redox reaction and calculate [Cr³⁺].
- 16. In a redox titration, 0.300g of Na₂C₂O₄ is placed into a 250mL flask and acidified. The resulting solution requires 23.42mL of KMnO₄ to reach the endpoint. The reaction is

$$5C_2O_4^2 + 2MnO_4^2 + 16H^4 \Rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$$
 Using the above data, calculate [KMnO₄].

17. The electrochemical cell below produces an initial voltage of 0.93V.

- a) Identify X.
- b) Identify a suitable electrolyte Y
- c) Identify a suitable electrolyte Z
- d) Indicate on the diagram the direction of electron flow.
- 18. Draw and label a diagram of a cell capable of producing Br₂ from molten NaBr. Label the anode and cathode, then indicate at which electrode Br₂ is produced.

19. Consider the electrolytic cell:

- a) Write the equation for the half reaction occurring at the anode and the cathode.
- b) What is the minimum theoretical voltage necessary to plate nickel onto a copper spoon?

20. Consider the following electrochemical cell:

- a) The E° for the cell is +0.22V and the reduction potential for Ga³+ is -0.56V. What is the recution potential for TI+?
- b) Identify the oxidizing agent in the electrochemical cell.
- 21. Draw a diagram of a simple apparatus that could be used in a lab to demonstrate the electroplating of an iron nail with zinc. Indicate a suitable electrolyte, label the anode and calculate the E° for the reaction.
- 22. Identify two conditions that are necessary for the corrosion of an iron nail. Give the anode and cathode half reactions for corrosion.
- 23. Suggest three methods to prevent corrosion of an iron boat and discuss the advantages and disadvantages of each.
- 24. Explain why Ag will dissolve in 1M HNO3 but not in 1M H2SO4. Show reactions to support your explanation.

25. Consider the electrochemical cell:

- a) Toward which half cell does NOs in the salt bridge originally move?
- b) Write the equation for the half reaction occurring at the silver electrode.
- c) Identify the anode.
- d) What is the initial cell voltage?
- 26. The metals In, Tl, and Fe were separately placed in 1M solutions of In³⁺, Tl³⁺, and Fe²⁺. The observations are summarized in the table below.

Metal	h,"	п*	lie ²⁹
to	$\supset <$	ecación	SCECTION Bri
71		\times	
Pe			\times

- a) Complete the table above and indicate whether reactions do or do not occur.
- b) Write the three reduction half reactions starting with the half reaction that has the highest reduction potential.
- 27. In separate electrolysis experiments, 1M NaCl, 1M KNO₃, 1M Li₂SO₄, and 1M Cs₃PO₄ all produced the same gas at their cathodes. Write the half reaction for the formation of this gas and explain why the same half reaction occurs in all four cases.
- 28. Draw a diagram of a standard electrochemical cell that could make use of the reaction $Zn_{(s)} + Cl_{2(g)} \Rightarrow Zn^{2+}(aq) + 2Cl^{-}(aq)$. Identify all of the chemical substances in the cell.

29. Consider the following apparatus:

- a) On the diagram above, clearly indicate the direction of electron flow.
- b) Write two oxidation half reactions that occur.
- c) Write the half reaction that occurs at the iron fork.
- 30. Using silver as one of the electrodes, design an electrochemical cell that has a theoretical voltage greater than 3.00V. Draw a labeled diagram and identify all the components of your electrochemical cell.

