Solubility Review

*All substances in each equation should have states written!

- 1. Write a balanced chemical equation for the equilibrium in a saturated solution of an ionic compound with low solubility.
- 2. Write the dissociation equation and give ionic concentrations for 0.25M AlCl₃.

3. Define **solubility**.

- 4. Define saturated solution.
- 5. Which is better at conducting: a 0.1M NaCl solution or a 1.0M CH₃OH solution. Why?
- 6. Can a 0.1M solution of MgCl₂ at room temperature be a saturated solution? Explain.
- 7. A solution of CaBr₂ is found to have 6.78g of CaBr₂ per 250.0 mL of solution. What is the [Br-] in the solution?
- 8. If a 500.0 mL solution contains 0.050 mol of Al₂(SO₄)₃, write a dissociation equation and calculate the molar concentrations of each ion in solution.
- 9. Devise a method to separate a solution with a mixture of $SO_{4^{2-}}$, I⁻, and OH⁻.
- 10. Give the formula, complete, and net ionic equation when 0.1M solutions of Ca(NO₃)₂ and Na₂SO₄ are mixed.
- 11. A saturated solution of AgCH₃COO was evapourated to dryness. The 250.0 mL sample was found to contain 1.84g of AgCH₃COO. Calculate the Ksp for AgCH₃COO.
- 12. A saturated solution of Pb(IO₃)₂ has a concentration of 0.038M. Calculate the solubility product constant for Pb(IO₃)₂.
- 13. What is the solubility of CaCO₃ in mol/L?
- 14. Calculate the solubility of Ag₂C_rO₄ in g/L.

- 15. Calculate the maximum mass (g) of CaSO₄ that could dissolve in 50.0L of water.
- 16. Will a precipitate form if 30.0 mL of 0.054M Ca(NO₃)₂ is mixed with 60.0 mL of 8.1 x 10⁻⁴M Na₂SO₄?
- 17. Will a precipitate form when 90.0 mL of 1.00 x 10⁻²M Cu(NO₃)₂ and 10.0 mL of 1.00 x 10⁻²M NaIO₃ are mixed? Explain using appropriate calculations.
- 18. Calculate the maximum moles of Br⁻ that can be added to 0.500L of 0.10M Pb(NO₃)₂ so a precipitate just starts to form. Then write the net ionic equation for the precipitate formation.
- 19. Calculate the maximum mass of Pb(NO₃)₂ that could be dissolved in 100.0 mL of 0.100M NaCl without forming a precipitate.
- 20. Consider the following equilibrium: $MgCO_{3(s)} \Leftrightarrow Mg^{2+}_{(aq)} + CO_{3^{2-}_{(aq)}}$ When solid Ca(NO₃)₂ is added, more MgCO₃ dissolves. Explain.
- 21. In which of the following is Ag₂C₂O₄ likely to be least soluble: pure water, 0.10M K₂CrO₄, or 0.10M AgNO₃? Explain.
- 22. A saturated solution of CaSO₄ is prepared by adding excess solute to water.a) Write an equation that represents the saturated solution.
 - b) Identify a soluble salt that when added to the equilibrium in a) would cause more solid to dissolve. Explain how this would work.
- 23. A student adds Ag⁺ to a solution containing 0.10M Cl⁻ and 0.10M CO₃²⁻. Determine the colour of the first precipitate to form, given the following data:

AgCl	white ppt	$Ksp = 1.8 \times 10^{-10}$
Ag ₂ C	O ₃ yellow ppt	Ksp = 8.5 x 10 ⁻¹²
*Hint: use type	D strategy	

 24. In an experiment a student pipettes a sample of saturated MgBr₂ solution into a beaker and evapourates the sample to dryness. The following data is recorded: Volume of saturated MgBr₂: 25.00mL Mass of Beaker: 89.05g

Mass of Beaker and solid 93.47g Calculate the solubility of MgBr₂ in moles per litre.