

Unit 5: THE MOLE

- 1. Mole Definition & Background
- 2. Molar Mass
- 3. Mole Calculations
- 4. Percent Composition
- 5. Empirical Formulas
- 6. Molecular Formulas

1. Mole Definition & Background

• The mole was developed from the work of Amadeo Avogadro (1776-1856) who studied the relationship between different gases and their volumes

He found that a certain number of gas particles, no matter what type, take up the same amount of space. So, by finding the mass of the particles, and comparing it to the mass of hydrogen, one could find out how many particles were in that space.

Wilhelm Ostwald developed & introduced the mole concept in the 1890s, although it didn't catch on until the 1950s.

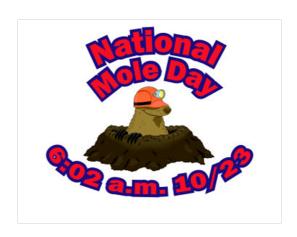
The Mole

- The mole is the fundamental unit for measuring amount in chemistry. It's a conversion just like 1 dozen is 12 objects...
 1 mole = 6.02 x 10²³ objects

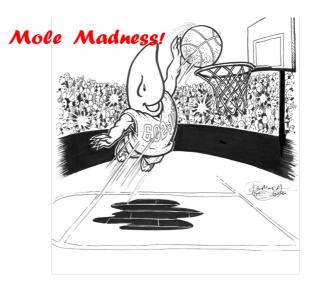
 602 000 000 000 000 000 000
- (Avogadro's Number)
 The large size of Avogadro's number reflects its use in the counting of very small objects (atoms and molecules)
- It is not a perfect conversion, just an approximation, so sig figs count

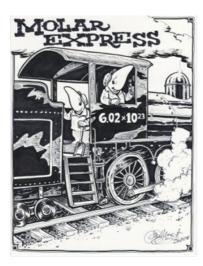
A dozen is a convenient way for bakers to talk of buns, whereas a mole is a convenient way for chemists to talk of atoms, molecules, or particles, as one mole of particles would fit in the palm of your hand.

The Mole


- By definition, 1 mole is the number of atoms in 12.0 g of Carbon-12
- so 12.0 g of carbon contains approx.
 6.02214179... x 10²³ carbon atoms and is defined as 1 mole of carbon
- 1 mole is further approximated to three sig figs: 6.02 x 10²³

How big is 1 mole?


- You could stack 1 mole of pennies back and forth from the earth to the sun 500 million times
- You could spread 1 mole of unpopped kernels across the U.S.A. and cover it to a depth of 9 miles
- If you had 1 mole of dollars and spent it at a rate of one million dollars a second, it would take 19 billion years to spend it all

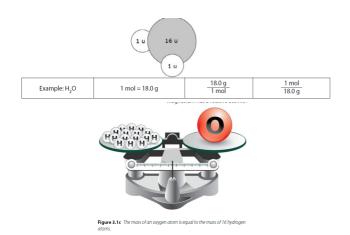

 1 mole of coke cans would cover the surface of the earth to a depth of over 200 miles!

2. Molar Mass

Mass Numbers on the Periodic Table take on two meanings

- Meaning #1:
- Atomic Mass: found by adding the number of protons with the number of neutrons units are atomic mass units (a.m.u.)
- A carbon-12 atom has 6 protons and 6 neutrons and a mass of 12 a.m.u.
- Recall that masses on the p.t. are not whole numbers due to weighted average of isotopes

Meaning #2:


- **Molar Mass:** the mass in grams of 1 mole of that element (units are **g/mol**)
- Avogadro figured out how many atoms were in 12.0g of carbon, and called it '1 mole' of carbon
- Then, the mass of one mole of hydrogen atoms is 1.0g because each hydrogen atom has 1/12 the mass of a carbon atom, and so on
- So, the number for **atomic** and **molar** masses is the same, but their definitions and their units are different

Molar Mass of Elements

- 1 mol of C is 12.0g. 1 mol of Fe is 55.8g
- this is because a C atom has less mass than an Fe atom
- a C atom has 12p and 12-14n, whereas an Fe atom has 26p, and 28-34n, so an Fe atom is much heavier
- thus a mole of Fe atoms would be much heavier than a mole of C atoms
- -1mol of O₂ is 32.0g (2 x 16), because it's diatomic, so there are actually 2 mol of singular O atoms. This is the case for the 7 diatomics http://www.wiredchemist.com/anim-mole

Molar Mass of a Compound

- The total mass of all atoms in the molecule
- Multiply the mass of each element by the subscript on that element in the formula
- E.g. Molar mass for H₂O
- = 2 (molar mass of H) + 1 (molar mass of O)
- \bullet = 2(1.0) + 16.0 = 18.0 g/mol
- so, 1 mole of water (6.02 x 10²³ molecules) has a mass of 18.0g

Calculate the Molar Mass

- Ne
- just look at periodic table 20.2 g/mol
- Round all molar masses to the nearest TENTH (one decimal place)
- SF_e
- 32.1 + 6(19.0) = 146.1 g/mol
- C₂H₅OH
- 2(12.0) + 6(1.0) + 16.0 = 46.0 g/mol

- H₂SO₄
- 2(1.0) + 32.1 + 4(16.0) = 98.1 g/mol
- Cu(NO₃)₂
- 63.5 + 2(14.0) + 6(16.0) = 187.5 g/mol
- Iron II sulfate trihydrate
- FeSO₄ 3H₂O
- 55.8 + 32.1 +7(16.0) +6(1.0)= 205.9 g/mol

HOMEWORK:

Mole Problems #0 Worksheet - Part 1

3. MOLE CALCULATIONS

• Version 2 - Mole Song

Moles to Mass

- Find the mass of one mole of NaCl
- 58.5g
- Find the mass of two moles of NaCl
- 117.0g
- How did you get the answer?
- 2 moles x 58.5 g/mol = 117.0 g

- Using a table:
- starting value | unit we want for answer
 unit we have for starting value
- Top left and bottom right units cancel, so we are left with unit we want in answer (the top right unit)

- Calculate the mass of 2.40 mol of ammonium carbonate.
- NH_4^+ CO_3^{2-}
- $\bullet \quad NH_4{}^+ \qquad \ \ ({\rm to\; balance\; charges})$
- (NH₄)₂CO₃
- MM = 2(14.0) + 8(1.0) + 12.0 + 3(16.0) =
- •

96.0g/mol

$$= 230.4g = 2.30 \times 10^{2}g$$

- What is the mass of 0.500 moles of NaCl?
- 0.500 mol x 58.5 g/mol = 29.3 g
- Find the mass of 0.35 moles of NaCl.
- 0.35mol 58.5g 1 mol

$$= 20.475g = 2.0 \times 10^{1}g$$

• Notice the mole unit cancels (one on top, one on the bottom), leaving only the gram unit!

- Do all calculations for moles using a table as it will be very helpful for more complicated problems.
- Calculate the mass of 0.25mol of MgBr₂.
- Molar mass $MgBr_2 = 24.3 + 2(79.9) = 184.1g/mol$
- 0.25mol 184.1g 1 mol = 46g MgBr₂

Calculate the mass of each

- 1.20 mol of HNO₃
- 75.6g HNO₃
- 0.60 mol of acetic acid
- 36g of acetic acid

Mass to Moles

- How many moles are in 100.0g of CaS?
- MM of CaS = 40.1 + 32.1 = 72.2g/mol
- 100.0g | 1 mol • 72.2g

= 1.39 mol CaS

• Note: Molar mass conversion can be written as 72.2g in one mole (72.2g/mol) or that one mole has a mass of 72.2g (1 mol/72.2g)

- How many moles are in 22.5g of aluminum oxide?
- Al₂O₃
- $\frac{22.5g}{102.0g}$ $\frac{1 \text{ mol}}{102.0g}$ = 0.221 mol Al₂O₃

- Calculate the number of moles in each of the following:
- 50.0g of copper (II) oxide
- 0.629 mol CuO
- 24mg of NaCl (Hint: change to g first)
- 4.1 x 10-4mol NaCl

HOMEWORK: Mole Problems #0 Worksheet

Finding Molar Mass Using Experimental Data

• If you do not know the chemical formula of a substance, its molar mass can be found if you know the mass of a sample and the number of moles it contains.

Example

• If a 0.35 mole sample of a compound has a mass of 44.4 g, what is its molar mass?

• Molar mass = $\frac{\text{grams}}{\text{moles}}$ = $\frac{44.4 \text{ g}}{0.35 \text{ mol}}$ = 130 g/mol

• If you know this compound is either FeCl₃ or FeCl₂ you can compare molar masses with these compounds and find a match.

• FeCl₃ = 55.9 + 3(35.5) = 162.4 g/mol

• FeCl₂ = 55.9 + 2(35.5) = 126.9 g/mol

• The unknown compound is FeCl₂

Moles to Molecules

- We must use Avogadro's number
- There are 6.02×10^{23} particles in 1 mole
- How many molecules are in 1.00 mole of NaCl?
- 6.02 x 10²³ molecules
- How many molecules are in 2.00 mole of NaCl?
- 1.20 x 10²⁴ molecules

- How many molecules are in 0.500 mole of NaCl?
- 3.01 x 10²³ molecules
- How many molecules are in 0.500 mole of CuS?
- 3.01 x 10²³ molecules
- http://group.chem.iastate.edu/Greenbowe/sections/projectfolder/flashfiles/stoichiometry/solid_atom s.html
- Keep in mind that Avogadro's number is

independent of the type of molecule or object we
are talking about.

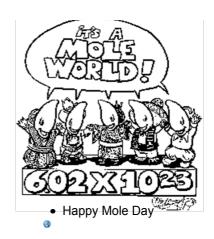
• Mass is *dependent* because every type of atom has a different mass!

Name	Equivalence Statement	Conversion Factors		
Avogadro's number	1 mol = 6.02×10^{23} items	6.02 x 10 ²³ items 1 mol	1 mol 6.02 x 10 ²³ items	

- Use the TABLE for all questions!
- How many molecules are in 1.20 mol of PbSO₄?

• 1.20mol 6.02 x 10²³ molecs

 $= 7.22 \times 10^{23} \text{ molecs}$


• How many molecules in 1.30 mol of potassium chloride?

• 1.30 mol 6.02 x 10²³ molecs

 $= 7.83 \times 10^{23} \text{ molecs}$

Exercises

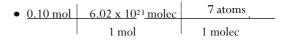
- Calculate the number of molecules in each of the following:
- 0.75 mol H₂SO₄
- Ans: 4.5 x 10²³ molecs of H₂SO₄
- 2.35 x 10-1 mol Ca(OH)2
- Ans: 1.41 x 10²³ molecs of Ca(OH)₂

Molecules to Moles

- How many moles in 5.42×10^{22} molecules of Na_2S ?
- 5.42 x 10²² molecs 1 mol 6.02 x 10²³ molecs

 $= 9.00 \times 10^{-2} \text{ mol Na}_2\text{S}$

Exercise


- How many moles in 3.21 x 10²³ molecules of KBr?
- 0.533 mol KBr

Moles to Atoms

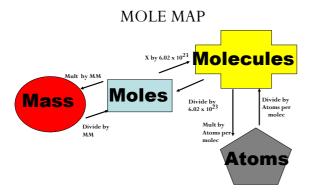
- If we are dealing with an element, do moles to atoms just as you did moles to molecules, because an element is made up of singular atoms (except the 7 diatomics)
- If we are dealing with compounds, we must do a 'moles to molecules' step and then a 'molecules to atoms' step

- How many atoms are in 0.10mol of H_2SO_4
- 1st -How many molecules are in 0.10 mol of H₂SO₄?
- 2nd -How many atoms in one molecule of H2SO4?

 $= 4.2 \times 10^{23} \text{ atoms}$

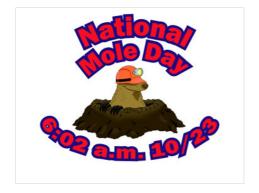
• Note: the number of atoms in a molecule is a counting number, not a measurement, so sig figs don't apply!

- How many atoms are in 1.50 mol of calcium carbonate?
- CaCO₃


• <u>1.50mol</u>	6.02 x 10 ²³ molecs	5 atoms	
	1 mol	1 molec	

 $= 4.52 \times 10^{24} \text{ atoms}$

Exercise


- Determine the number of oxygen atoms in 0.65 mol Mg(OH)₂.
- 7.8 x 10²³ atoms

HOMEWORK:

Mole Problems #1 - Parts 1 & 2

Multi Step Mole Problems

- Many times problems will involve more than one conversion in the same question.
- These problems are solved by using multiple conversion factors.
- Pay attention to cancelling units to aid in putting the numbers in the correct positions

Mass to Molecules

- How many molecules are present in 60.0g of NaOH?
- Find the molar mass of NaOH and set up your table

	60.0 g 1mol 40.0 g		6.02×10 ²³ molec	
			l mol	

 $= 9.03 \times 10^{23} \text{ molec}$

- How many molecules are present in 5.00g of magnesium sulphate?
- MgSO₄ MM = 24.3 + 32.1 + 4(16.0) = 120.4 g/mol

• 5.00g 1 mole 6.02 × 10²³ molecs 120.4 g 1 mole

 $= 2.50 \times 10^{22}$ molecs

Mass to Atoms

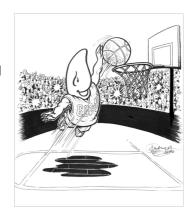
- How many atoms would be present in 4.50g of copper (II) chloride
- Find the formula and MM for copper (II) chloride

• 4.50g	1 mole	6.02. × 10 ²³ molecs	3 atoms
	134.5 g	l mole	l molec

 $= 6.04 \times 10^{22} \text{ atoms}$

Molecules to Mass

- What is the mass of 1.2 x 10⁴ molecules of copper (II) chloride?
- 1.2 x 10⁴ molecs. 1 mol 134.5 g 6.02 x 10²³ molecs 1 mol 136.5 g = 2.7 x 10⁻¹⁸ g


Exercise

 How many carbon atoms would be present in 795.0mg of acetic acid?

• 795mg	1 g	1 mole	6.02×10^{23} molecs	2 atoms
	1000ma	60 0 o	l mol	1 molec

 $=1.60 \times 10^{22}$ carbon atoms

HOMEWORK: Mole Problems #1 - Parts 3 & 4

Moles and Volumes of Gases

- 1.00 mole of <u>any gas</u> will occupy a volume of 22.4 L at STP
- •
- STP = Standard Temperature and Pressure
- Standard Temperature = 0 degrees C
- Standard Pressure = 1 atmosphere

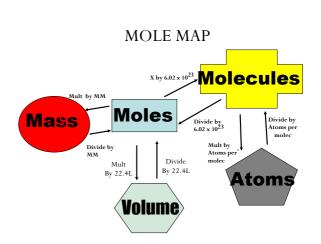
Moles to Volume

• How much space does 0.563 moles of H₂ gas take up at STP?

•
$$0.563 \text{ mol} \Big| \frac{22.4 \text{ L}}{1 \text{ mol}} = 12.6 \text{ L}$$

Volume to Moles

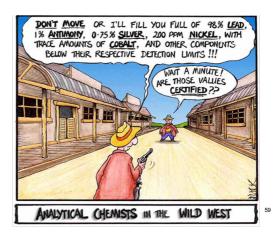
- How many moles in 18.7L of CH₄ gas (methane) at STP?
- $\frac{18.7L}{22.4} \frac{1 \text{ mole}}{L} = 0.835 \text{ moles}$

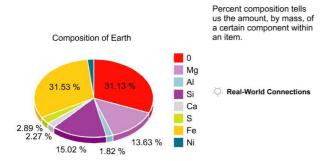

Mass to Volume

• What would be the volume of 90.0g of H_2 gas at STP?

•
$$90.0 \text{ g}$$
 | 1 mol | 22.4 L
= 1008 L
= 1.0 x 10³ L

Molecules to Volume


- What volume (in litres) is occupied by 8.14 x 10²² molecules of CO₂ gas (at STP)?
- 8.14 x 10^{22} molecs | 1 mol | 22.4 L | 6.02 × 10^{23} molecs | 1 mol | = 3.03 L


HOMEWORK:

Mole Problems #1 - Part 5
Mole Problems #2 Worksheet

Official Mole Day Website

4. Percent Composition

What is it?

- The percentage (by mass) of each element in a chemical formula
- AND
- The percentage (by mass) of each component in a mixture

From a Chemical Formula:

- Find atomic mass of each element and molar mass of entire compound
- Assume 1 mole of substance
- Calculate mass of each element by multiplying atomic mass by subscript
- Divide mass of each element by mass of compound (molar mass) then express as a %

Find the % composition of Fe_2O_3

- Atomic mass of Fe = 55.8 g/mol
- Atomic mass of O = 16.0 g/mol
- Molar mass of Fe₂O₃
- = $2 \times 55.8 \text{ g/mol} + 3 \times 16.0 \text{ g/mol}$
- = 159.6 g/mol

- Mass Fe = 55.8 g/mol x 2 mol Fe
- = 111.6 g
- % Fe = $\underline{111.6}$ g x 100 = $\underline{69.92}$ %
- 159.6 g

- Mass of O = 16.0 g/mol x 3 m
- = 48.0 g
- % $O = 48.0 \text{ g} \times 100 = 30.1 \%$
- 159.6 g

 $\mathrm{Fe_2O_3}\,$ is 69.92 % iron and 30.1 % oxygen by mass

What is the % composition of C₆H₁₂O₆

- Mass of 1 mole C₆H₁₂O₆ =
- = 6(12.0 g/mol) + 12(1.0 g/mol) + 6(16.0 g/mol)
- = 180.0 g
- % C = $(6 \times 12.0 \text{ g}) \times 100 = 40.0 \%$
- 180.0 g
- % H = $(12 \times 1.0 \text{ g}) \times 100 = 6.7 \%$
- 180.0 g
- % 0 = $(6 \times 16.0 \text{ g}) \times 100 = 53.3 \%$ • 180.0 g

From experimental data:

- A sample of a gas compound is analyzed and found to contain 23.5 g nitrogen and 53.9 g oxygen. What is the % composition?
- Total mass 23.5 + 53.9 = 77.4 g
- % N = <u>23.5 g</u> x 100 = 30.4 %
- 77.4 g
- % O = $53.9 \text{ g} \times 100 = 69.6 \%$
- 77.4 g

What is the percent water in calcium chloride hexahydrate?

Mass of $H_2O = 6(1.0 + 1.0 + 16.0) = 108.0 g$

- Formula mass CaCl2 6H2O
- \bullet = 40.1 + (2 x 35.5) + (108.0)
- = 219.1 g

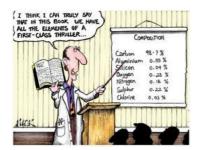
•

- $\% H_2O = 108.0 \text{ g} \times 100 = 49.29 \%$
- 219.1 g

% Composition of a Mixture

- Brass is made by melting together copper, zinc and other metals
- What is the percent composition of the alloy if the starting materials are 350 kg copper, 180 kg zinc and 25 kg tin?

- Total mass of mixture
- = 350 kg + 180 kg + 25 kg
- = 555 kg



- % copper = 350 kg x 100 = 63 %
- 555 kg
- % zinc = $180 \text{ kg} \times 100 = 32 \%$
- 555 kg
- % tin = $25 \text{ kg} \times 100 = 4.5 \%$
- 555 kg

..

HOMEWORK:

Percent Composition Worksheet

5. Empirical Formulas

What is Empirical Formula?

- The formula of a compound determined from experimental data (mass or percent)
- Gives whole number ratio of elements
- Simplest or "reduced" form of the molecular formula

Examples

- Molecular Formula: C₂H₆
 Empirical Formula: CH₃
- Molecular Formula: C₆H₁₂O₆
 Empirical Formula: CH₂O
- Molecular Formula: C₄H₉O₃
 Empirical Formula: C₄H₉O₃

1. Mass of component elements

- Data may be in mass or as a percent
- If data is in percent, assume 100 g total and use percent as mass
- 25.3 % element A and 74.7 % element B becomes
- 25.3 g element A and 74.7 g element B if we work with 100.0 g total

2. Convert Mass to Moles

 Convert each element to moles by dividing by molar mass of the element

3. Find Mole Ratio

• Divide each number of moles by the smallest number

4. Find Whole Number Ratio

Multiply to eliminate all decimals (or fractions)

Example # 1

- A 43.2 g lump of charcoal (carbon) burns with oxygen and produces 159.0 g of a new compound. What is the empirical formula of this compound?
- Step 1:
- Mass of Carbon = 43.2 g
- Mass of Oxygen = 159.0 43.2 g
- = 115.8 g

2. Find moles of each element (divide by molar mass)

•
$$\frac{115.8 \text{ g O} | 1 \text{ mol O}}{16.0 \text{ g O}} = 7.24 \text{ mol O}$$

3. Divide to find mole ratio (always divide by smallest # of moles)

•
$$\frac{-43.2 \text{ g C}}{12.0 \text{ g C}} = \frac{3.60 \text{ mol C}}{3.60} = 1.00 \text{ mol C}$$

•
$$\frac{115.8 \text{ g O}}{16.0 \text{ g O}} = \frac{7.24 \text{ mol O}}{3.60} = 2.01 \text{ mol O}$$

Step 4 unnecessary for this question!

- 2 moles of oxygen for each 1 mole of carbon
- Empirical Formula is . . .
- CO₂

Example #2

- Analysis of a compound showed that it contained 70.0 % iron and 30.0 % oxygen. What is the formula of this compound?
- Assume we have 100 g

Multiply to find Whole Numbers

Element	mass in 100.0 g	mol	mol ratio	simplest ratio
• Fe	70.0	<u>70.0</u> = 1.25 55.8	<u>1.25</u> = 1.00 1.25	2
• 0	30.0	30.0 = 1.88 16.0	<u>1.88</u> = 1.50 1.25	3

Empirical Formula is ... Fe₂O₃

Example #3: Find Empirical Forumula if a compound has 20.2 % Al, 79.8 % Cl

• Element	mass in 100 g	mol	mol ratio	simplest ratio
• Al	20.2 g			
• CI	79.8 g			

Example #3: Find Empirical Forumula if a compound has 20.2 % Al, 79.8 % Cl

• Element •	mass in 100 g	mol	mol ratio	simplest ratio
• Al	20.2 g	<u>20.2</u> =.748 27.0	<u>.748</u> = 1.00	1
• CI •	79.8 g	79.8 =2.25 35.5	<u>2.25</u> = 3.01 .748	3

Empirical Formula is AlCl₃

HOMEWORK:

Percent Composition & Empirical Formulas Worksheet

 $http://www.wwnorton.com/college/chemistry/gilbert2/tutorials/interface.asp?chapter=chapter_03 \\ \& folder=percent_composition$

6. Molecular Formula

Actual Formula of a Compound

Molecular Formula

- Experimental data can only give the simplest whole number ratios for a formula
- Some compounds may have the same empirical formula, but have different molecular formulas
- E.g. NO₂ and N₂O₄
- C_2H_2 and C_6H_6

- Molecular formula is always a whole number multiple of the empirical formula
- To find the multiplier, divide the molar mass by the empirical mass (mass of empirical formula)

Example #1

- Many hydrocarbons (compounds containing only hydrogen and carbon) have the same empirical formula.
- Two compounds both have an empirical formula of CH₂. The molar mass of compound A is 28.0 g/mol. The molar mass of compound B is 70.0 g.mol What is the molecular formula of each?

Compound A

• Empirical mass = 12.0 + 2(1.0) = 14.0 g/mol

$$\frac{Molar\;Mass\;A}{Empirical\;Mass} = \frac{28.0\;g/mol}{14.0\;g/mol} = 2\;\; \textit{(multiplier)}$$

• Molecular formula of A = (CH_2) x 2 = C_2H_4

Compound B

- Empirical mass = 12.0 + 2(1.0) = 14.0 g/mol
- Multiplier = $\frac{\text{Molar Mass B}}{\text{Empirical Mass}} = \frac{70.0 \text{ g/mol}}{14.0 \text{ g/mol}} = 5$
 - Molecular formula of B = $(CH_2) \times 5$ = C_5H_{10}

Example # 2

- The empirical formula for a compound is NO₂. If 0.405 moles of the substance has a mass of 37.2 g. What is the molecular formula?
- Empirical mass = 14.0 + 2(16.0) = 46.0 g/mol
- Molar mass = $\frac{37.2 \text{ g}}{0.405 \text{ mol}} = 91.9 \text{ g/mol}$

Find Multiplier

 $\frac{Molar\ Mass}{Empirical\ Mass} = \frac{91.9\ g/mol}{46.0\ g/mol} = 1.998 \approx 2$

Formula is (NO_2) X 2 or N_2O_4

HOMEWORK:

Empirical & Molecular Formula Worksheet